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Abstract—The visual information provided by applications fa-
cilitating urban communications such as Google Street View and
Waze scene report is intuitionistic and useful since it conforms
to human cognitive habits. However, current street view services
cannot provide real-time information, and the scene report ser-
vice is passive. An on-demand and real-time visual-information-
providing mechanism is still unavailable. In this paper, we develop
the crowdsourcing-based Real-time View Share (RVShare) system,
which provides pictures of requested locations taken by travelers
just passing by. To enable the RVShare system, we propose a
view-sharing job distribution mechanism, where a wavelet-based
vehicle prediction scheme and a tree-searching-based tracking
scheme are developed to select vehicles for view sharing. We also
design a simple but effective incentive mechanism to encourage
more travelers to participate into the view-sharing activity, where
the rewarding process takes the quality of uploaded pictures into
account. Moreover, we develop a processing flow for uploaded
pictures to improve the accuracy of the picture quality evaluation
and verify the picture content. Comprehensive experiment results
from road tests are conducted to evaluate the performance of the
RVShare system.

Index Terms—Crowdsourcing system, on-demand, real-time,
visual.

I. INTRODUCTION

TODAY’S urban communications have been significantly
facilitated by smartphone applications, where collecting

comprehensive and real-time road information is the corner-
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stone function. Map services like Google maps provide not
only turn-by-turn instructions to navigate a user to a strange
place but provide traffic congestion conditions and estimated
time of arrival as well. Current map services enable the street
view function, which provisions real visual information of
certain places to help users get intuitionistic feelings. The visual
information conforms to human cognitive habitats since the
image of landmarks or buildings could be more meaningful than
those highly abstracted signs on the traditional map. In addition,
current map services also provide congestion levels labeled
by different colors through sensor data fusion [1], [2]. Waze
is another kind of an app utilizing the crowdsourcing-based
approach [3], [4] to serve drivers, which forms a social network
of drivers to share road information. Waze allows drivers to file
a real-time report on a scene such as traffic jams, accidents, and
police traps, where a picture can be attached to the report to
illustrate the real situation. The picture makes the report more
informative, but the reporter has to be around the scene so that
the truthfulness of the report can be guaranteed.

A picture is worth a thousand words in the context of road
information collection and recognition. A picture of a land-
mark taken by a passing traveler can be more useful than the
panoramic view of the landmark obtained months ago since
it is perhaps under external remodelling. A picture taken by
a traveler currently on the road combined with the red line
segment on Google maps can be more meaningful for a user
to realize the degree of traffic congestion, and the information
delivered by the picture can be up-to-date compared with the
color of the line segment waiting for update. However, the
current street view service can only provide views surveyed
by the camera man maybe weeks ago, and the Waze report
can provide the visual information of a scene only if there is
a reporter happening to be around.

This paper proposes a scene reporting system, i.e., Real-time
View Share (RVShare), which provides on-demand and real-
time visual information based on a crowdsourcing approach,
which can further improve the user’s quality of experience
(QoE) for urban communications such as path planning and
navigation. With RVShare, a user can request real-time visual
information at a location, and the server will distribute the
request to possibly passing vehicles so that the most recent
picture of the location in a vehicle passenger’s perspective can
be provided to the user. We utilize the smartphone in the front
of a vehicle to get access to vehicle’s acceleration, orientation,
and road’s scene information for the evaluation of the RVShare
system. More specifically, we have the following three-fold
contributions.
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First, we propose a view-sharing job distribution mecha-
nism, where a wavelet-based vehicle prediction scheme and a
tree-searching-based tracking scheme are developed to select
vehicles for view sharing. If there are no vehicles near the
requested view-sharing location to take pictures, our proposed
vehicle selection scheme could trace vehicles in a larger area
around and determine vehicles that may pass by the requested
location. We fully exploit the advantage of wavelet analysis,
which is an effective way for extracting the features of time-
series data. To the best of our knowledge, it is the first time
wavelet analysis has been integrated into vehicle maneuver pre-
diction applications. Field experiments show that the wavelet-
based prediction can achieve an average of 95.1% accuracy.

Second, we design a simple but effective incentive mecha-
nism to encourage more travelers to participate into the view-
sharing activity, which takes the special requirements of the
view-sharing application into account. The quality of uploaded
pictures is reflected in the rewarding stage of the incentive
mechanism, which promotes the effectiveness of reward uti-
lization and the quality of uploaded pictures. The quality is
evaluated by comparing the uploaded picture with the current
street view image, where the number of feature match points
is counted. The number of feature match points can reflect the
content and the shooting angle of the uploaded picture, both of
which are relative to the picture’s quality directly.

Third, we develop a processing flow for uploaded pictures
to improve the accuracy of the picture quality evaluation in the
view-sharing case. The current street view images usually have
been processed, which results in many incorrect matches in
the matching process, thus influencing the accuracy of picture
quality evaluation. We perform ratio and symmetry tests, as
well as the random sample consensus (RANSAC) method [5],
to filter out wrong feature matches. We find that such simple but
effective image processing approaches are very suitable for the
view-sharing application, where we specify criteria for picture
quality evaluation referable for other similar applications.

The remainder of this paper is organized as follows.
Section II presents related work. Section III demonstrates the
architecture of RVShare system and design challenges. We
describe vehicle selection procedure to distribute view-sharing
job among selected vehicles in Section IV. In Section V, the
Vickrey–Clarke–Groves (VCG) auction-based incentive mech-
anism is designed to calculate payments for uploading pictures.
In Section VI, we present image matching and picture quality
evaluation. Section VII shows experiment and simulation re-
sults of the RVShare system. Conclusion remarks are drawn in
Section VIII.

II. RELATED WORK

Road Information Collection: Acquiring road information is
a critical technique for applications such as traffic congestion
alleviating and route planning, which attracts much attention
from the research community. Wireless sensor networks are
wildly used to sense road conditions, such as those systems
utilizing smart cameras [6] and ultrasonic sensors [7]. How-
ever, the wireless sensor network cannot cover every corner
of wide urban areas, and the deployment is costly. The rise

of mobile crowdsensing paradigm makes it possible to cover
a wider range of urban areas at low cost [8]. Arnaud et al. pro-
pose a probabilistic approach for road hazard warnings taking
advantage of crowdsourced drivers [9], which, however, cannot
evaluate the credibility of the driver’s road report. Our work in
this paper presents a crowdsourcing approach to collect road
information, where smartphone cameras are utilized through
coordination. Since our system implements three key functions,
we hereby briefly survey existing efforts to help enable each of
the functions.

Vehicle Prediction and Tracking: The probabilistic theory
is usually utilized to perform vehicle maneuver prediction.
In [10], the probabilistic finite-state machine and fuzzy logic
are combined to recognize the vehicle’s maneuver, but the
prediction process is not reliable with accuracy lower than 80%.
Firl et al. proposed a probabilistic approach based on advanced
driver assistance system to predict the vehicle’s lane-change
maneuver [11], but the utilization of professional camera and
radar is costly, and the accuracy is only 40% when prediction
lead time reaches 1 s. In [12], Ohn-Bar et al. learn holistic
features first and then predict driver’s maneuvers based on the
learning data, but an array of sensors are needed to capture
driver’s gestures and road conditions. Chen et al. propose a
scheme to detect the vehicle’s maneuver through the gyro-
scope sensor embedded in smartphones [13]. However, they
cannot predict the vehicle’s maneuver in advance. We propose a
scheme to predict the vehicle’s near future actions using smart-
phone sensors, which can achieve high prediction accuracy and
relatively large prediction lead time.

A video-based approach is extensively applied to tackle
the vehicle tracking issue. Hajimolahoseini et al. propose an
algorithm to track the vehicle from videos captured by fixed
cameras [14], whereas Xiong et al. propose a method to obtain
the vehicle’s trajectory in the video based on the pixel-level
motion vector [15]. However, the video-based method is not
flexible, and the cost is extremely high. The Global Positioning
System (GPS)-based tracking scheme is more favorable with
the help of a satellite system [16]; thus, we propose a tracking
scheme to trace vehicle’s trajectory with GPS data, which is
flexible and less costly.

Incentive Mechanism: Game theory, auction theory, and con-
tract theory are popular tools to design incentive mechanisms.
The Stackelberg game and auction theory are used in [17] and
[18]. Gao et al. use Lyapunov optimization and auction theory
to calculate payments for participatory mobile crowd sensing
workers under the constraint that workers will not quit [19].
However, few previous works consider the data quality in a real
system. To this end, Wen et al. design a quality-driven auction-
based incentive mechanism for indoor localization system in
which quality of received signal strength (RSS) data is defined
[20]. However, the data quality definition is only for evaluating
RSS signals and not suitable for pictures. In this paper, we
design an effective incentive mechanism that also considers
inherent characteristics of the picture quality.

Image Feature Matching: An important part of our system is
to match uploaded pictures with street view images to evaluate
the picture quality, where the challenge is that the street view
images are with strongly rendering by the service provider.
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Fig. 1. RVShare system architecture.

This makes the traditional way of feature matching infeasible.
Lowe proposes a scale-invariant local feature descriptor called
scale-invariant feature transform (SIFT) [21], which presents
outstanding performance over other feature descriptors when
the image rotates or the scale of the image changes. To improve
descriptor efficiency, Bay et al. [22] propose a speeded-up
robust feature (SURF). Arandjelovic et al. [23] propose the
RootSIFT feature descriptor based on SIFT feature descriptors.
However, our experiment results show that simply realizing any
of the given processing approaches cannot provide acceptable
feature matching performance for the view-sharing application;
therefore, a further process is necessary to improve evaluation
accuracy.

III. SYSTEM ARCHITECTURE AND DESIGN CHALLENGE

The RVShare system consists of three major parts: User,
Vehicle, and Cloud Server, which are shown in Fig. 1. A
walkthrough is described as follows:

Stage 1: Based on the Electronic Map Service, the user per-
forms the Service Request Creation to the cloud
server for road information acquisition at a re-
quested location. The request is associated with
the GPS Data and sent out through the Internet
Interface.

Stage 2: The cloud server receives the user’s request, and
then carries out the Vehicle Prediction and the
Vehicle Tracking near the requested location based
on the Electronic Map Service and the GPS Data
to finally determine vehicles that will pass by the
requested location. Then, the cloud sever requests
these vehicles to upload road pictures.

Stage 3: Vehicles receive the cloud server’s request, and bid
prices for uploading pictures.

Stage 4: The cloud server selects the winning vehicle set to
upload road pictures and calculates the correspond-
ing payments. Winning vehicles perform the Picture
Uploading to the cloud server as well as obtaining
payments.

Stage 5: The cloud server performs the Road Image
Processing to match those uploaded images with
Baidu street view. Then, the cloud server selects the
highest quality image and sends it back to the user.
The user receives and displays the image to acquire
the real-time visual road information.

To realize the system, we have to overcome the following
nontrivial challenges.

• The user is unwilling to wait for a long time after sending
the request; therefore, we need to reduce the waiting
time as much as possible. If there are no vehicles at the
requested location, an intuitive method is to ask vehicles
around to take road pictures for the user. However, these
vehicles may not pass by the requested location. We
propose a vehicle selection scheme to first search vehicles
around the requested location and then select those who
will arrive at the requested location, which can reduce the
user’s waiting time as much as possible.

• Vehicles are unwilling to upload road pictures since it
consumes power and traffic flow. Moreover, only quali-
fied pictures are useful to reflect the road situation. We
propose a quality-based auction that calculates payments
according to the picture quality and satisfies favored
economic properties.

• Precisely verifying the content of uploaded picture di-
rectly is difficult since it needs to consider several re-
quirements. To tackle this problem, we match uploaded
pictures with Baidu street view for quality evaluation.
However, Baidu street view images have been processed
so that the matching process may yield many incorrect
matches. We carry out ratio and symmetry tests and utilize
the RANSAC method to remove wrong feature matches.
Furthermore, we define the picture quality according to
matching results.

IV. VEHICLE SELECTION

Upon receiving a request, the cloud server first searches ve-
hicles around the requested location and then find out whether
those searched vehicles will pass by. Consider the example
shown in Fig. 2, P denotes the location of a vehicle, D is the
requested location, and A and B are two nearby intersections
around the location. If the vehicle intends to pass by D, it
needs to move toward D. Suppose the vehicle moves along
the path illustrated by the red line, it has to turn right at A;
otherwise, it will not pass by D. To find out whether a vehicle
will pass by the requested location as soon as possible, we need
to predict the vehicle’s maneuver including turning left, turning
right, and going straight at intersections in advance. Meanwhile,
we need to track the vehicle to see whether it will move to the
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Fig. 2. Schematic of the vehicle selection process.

requested location. We divide the vehicle selection process into
the vehicle prediction part and the vehicle tracking part. Corre-
spondingly, we propose vehicle maneuver prediction algorithm
(VMPA) and vehicle trajectory tracking algorithm (VTTA) to
predict vehicle’s maneuver and track vehicles, respectively.

A. Vehicle Prediction

The cloud server will collect the vehicle’s acceleration data
when it approaches intersections and then analyzes the data
to predict its maneuver. However, if the vehicle stops when
traffic lights turn red, the acceleration data are of little avail
for the maneuver prediction; therefore, we need to investigate
situations of moving and stopping when approaching intersec-
tions, which we also call moving and stopping at intersections,
respectively. When vehicles move at intersections, the cloud
server gathers vehicle’s acceleration data and then implement
wavelet transform to extract its features, which are utilized to
predict vehicle’s maneuver. When vehicles stop at intersections,
the cloud server first uses the lane-change information to predict
vehicle’s maneuver. If the lane-change information is not suffi-
cient for the prediction, orientation data are leveraged to detect
vehicle’s maneuver. The direction of the collected acceleration
data are perpendicular to the vehicle’s moving direction and
from the vehicle’s left side to the vehicle’s right side. Since
we only gather acceleration data and orientation data when
vehicles approach intersections with a low sampling rate, the
data traffic is not high for cellular networks. We also illustrate
this classified discussion for situations of vehicles moving and
stopping at intersections in Fig. 3.

1) Moving at Intersections: In this case, the cloud server
uses the vehicle’s acceleration information to predict its maneu-
ver. As shown in Fig. 4, X denotes the location of the intersec-
tion, and Y is the location for the server to predict the vehicle’s
maneuver. Acceleration data a = {a(1), a(2), . . . , a(N)} col-
lected during the vehicle moving from Z to Y is a sequence
of acceleration data to be analyzed. Correspondingly, denote tp
as the prediction lead time in which vehicle moves from Y to
X , and ti as the collection lead time in which a is gathered.
We will predict the vehicle’s maneuver ahead of tp time at Y ,

Fig. 3. Process of classified discussion.

Fig. 4. Schematic of moving at intersections.

which actually occurs at X through processing a collected in
period ti, thus reducing the user’s waiting time.

To predict the vehicle’s maneuver, we need to extract features
of a and then classify the extracted features into the three
categories of turning left, turning right, and moving straight.
Since a is time-series data, we utilize wavelet analysis [25]
to process it, which turns out to be effective. Wavelet analysis
provides frequency-domain information of acceleration in dif-
ferent scales that can serve as the features to distinguish one
kind of maneuver from another. We also have considered other
method such as fractal theory; however, wavelet analysis is
more efficient for our system. To the best of our knowledge,
this is the first time wavelet analysis is applied to vehicle
maneuver prediction. Our experiment results show that the
accuracy of prediction is 95.1% on average. Specifically, the
wavelet transformation of a is

DWTm,n = 〈a(t),Ψm,n〉 (1)

where 〈, 〉 is the inner product, and

Ψm,n(t) = a
−m/2
0 Ψ

(
a−m
0 t− nb0

)
.
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Fig. 5. Acceleration data and wavelet transform results. (a) Raw acceleration data. (b) Different scales in wavelet transform.

Fig. 6. Signal energy in different scale.

The expression Ψ(a−m
0 t− nb0) is known as Daubechies

wavelet, more specifically “db1” wavelet; a0 = 2; and b0 = 1.
Our experiment results show that the six-scale discrete wave-

let transform presents an outstanding performance of feature
classification, where m = 0, 1, . . . , 6 for n = 0, 1, 2, . . . , N .
Fig. 5 shows the original collected acceleration data, where
N = 200, and the corresponding results for discrete wavelet
transform when the vehicle is going to turn right. We can obtain
that with the increase in wavelet scale, the variation tendency of
the signal becomes increasingly obvious. Then, we acquire the
energy of each signal DWTm,n, which is calculated as

Em =
N∑

n=0

‖DWTm,n‖2. (2)

The corresponding energy eigenvector E = [E0, E1, . . . , E6]
is in fact the feature of a. In Fig. 6, a typical signal energy
in different scales for the corresponding three kinds of maneu-
vers are illustrated. Apparently, the characteristics for different
maneuvers vary distinctly, which makes the inference process
much more differentiable.

After obtaining these features, we implement k-nearest
neighbor (KNN) with k = 3 to construct the classifier and
input the training features sets to train the classifier. Finally,
we leverage the trained classifier to infer the prediction result,
which is the vehicle’s maneuver.

2) Stopping at Intersections: In this case, a vehicle stops
when it approaches the intersection due to the traffic lights.

Such an event cannot be predicted by analyzing acceleration
data features. We can take advantage of lane-change detection
to remove some deviating vehicles. For the sake of clarity, we
take roads with two lanes and three lanes as examples. For two-
lane roads if locating in the left lane, a vehicle cannot turn
right. As for three-lane roads, a vehicle locates in the right lane
represents turning right, locates in the middle lane represents
going straight, and locates in the left lane represents turning
left. Therefore, if we can detect that a vehicle makes a left lane
change when approaching an intersection, it will not turn right.
Furthermore, when a vehicle runs on a three-lane road, if we
detect that the vehicle makes a left lane change for twice when
approaching the intersection, it is most likely to turn left. To
this end, we carry out short-term lane-change detection when a
vehicle is reaching an intersection.

Suppose upon a vehicle is Lo away from the nearest inter-
section, the cloud server starts to detect whether the vehicle
will change lane using acceleration data a′ in the range of a
sliding window W ′. If the vehicle does not change lane when it
is Ld away from the intersection, stop the lane-change detection
since the vehicle is too close to make a lane change. Here, we
denote Lo and Ld as window distance and decision distance,
respectively. Both Lo and Ld are learned from vehicle’s lane
change behavior. Specifically, define the lane change distance
Lc as the radial distance along moving direction during a
vehicle changing lane. Among several lane change behaviors,
the minimum lane change distance is Lcmin and the maximum
lane change distance is Lcmax. Then

Lo = 2 × Lcmax, Ld = Lcmin. (3)

Before detecting a vehicle changing lane, filter out high fre-
quency noise of the acceleration data, and get local extremum,
then perform interpolation to extract its upper envelope. Typical
envelopes of left lane change and right lane change are shown
in Fig. 7.

According to the practical pattern of a′, we judge vehi-
cle changing lane when its acceleration satisfy the following
conditions.

• In W ′, the maximum value a′max is not less than a defined
threshold a′t: a

′
max ≥ a′t.
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Fig. 7. Acceleration envelope of left and right lane changes.

• Difference between the maximum value a′max and the
minimum value a′min is not less than a preset value d′t:
a′max − a′min ≥ d′t.

• Counting from beginning to end of a′ in W ′, the location
Lmax of a′max satisfies: pW ′ ≤ Lmax ≤ W ′.

Here, a′t and d′t are learned in the training stage, where a′t and d′t
are the least of all a′

max and d′
max, respectively. p is suggested

to be assigned value in range [0.2, 0.3]. If we detect a vehicle
making a lane change, we will utilize the support vector ma-
chine (SVM) to tell left lane change from the right lane change.

If the lane change does not help, when the vehicle is passing
through the intersection, its maneuver can be judged by reading
the orientation data Or obtained from the smartphone sensor,
which also helps to select the potential vehicles. We set a sliding
window W forwarding one element over time when new sam-
pled orientation data are generated and calculate the variance
of acceleration in W , which is termed as D(Or). If variance
D(Or) exceeds a threshold Dt, we consider that the vehicle
is making a turn. The orientation data ranges from 0 to 360◦

and may jump from 0 to 360 when the vehicle heads toward
the north direction and makes a turn simultaneously; therefore,
it is necessary to minus 360◦ called orientation compensation
when such jumping occurs. After detecting the vehicle making
a turn and compensating orientation jumping, the cloud server
will check the orientation change to differentiate left turns from
right turns. We illustrate the process as follows.

• If D(Or) < Dt at intersections, the vehicle goes straight.
• If D(Or) ≥ Dt at intersections, compensate orientation

jumping if necessary. Denote the average of orientation
data before and after turning as Ob and Oa, respectively:

— If Oa −Ob ≥ Ot, the vehicle turns right;
— If Oa −Ob ≤ −Ot, the vehicle turns left.

Here, Ot is the threshold for judging the event of turning left or
right with unit degree. Dt and Ot are suggested to be assigned
225◦ and 15◦, respectively.

Based on the given analysis, we present our VMPA in
Algorithm 1, which outputs whether the vehicle is turning left,
turning right, or going straight. Lines 1–6 are to detect the
vehicle’s distance to the incoming intersection. If the vehicle
arrives at Z , collect its acceleration data until it arrives at Y in

Lines 8–9. Lines 10–13 first process the vehicle’s acceleration
data and then train the classifier and infer the maneuver result. If
the vehicle stops at the intersection, we first determine whether
we can eliminate vehicles through lane-change detection in
Lines 15–20. If not, we collect the orientation data to judge its
maneuver in Lines 21–29.

B. Vehicle Tracking

We track vehicles to find out whether they finally arrive at
the requested location. To this end, we build a searching tree
to manage the potential vehicle list. Considering the example
shown in Fig. 2, we take A and B as tree roots, which are the
two nearest intersections to the requested location D. Suppose
the acceptable waiting time of the user initiating the view-
sharing request is Tmax. If the vehicle theoretically takes at
most Tmax to reach D according to the road’s velocity distri-
bution, all possible paths between the vehicle’s current location
to D are considered tree branches. After a tree is built in this
way, the cloud server only needs to monitor vehicles on the
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tree to see if they will pass by D eventually. Such vehicles are
added to the potential vehicle list. Based on the previous vehicle
maneuver prediction scheme, vehicles initially moving away
fromD will be eliminated from the list, and then, we can get the
final selected vehicles which will go to the requested location.

• Implement VMPA to predict the vehicle’s maneuver in
advance and eliminate the deviating vehicles.

• Assume there is a virtual vehicle at the searching tree’s
leaf node at the very beginning. It heads toward the tree’s
root along branches with the road’s average velocity. If
the potential vehicle falls far behind the virtual vehicle,
eliminate it from the potential vehicle list.

Since we have discussed VMPA in detail in Section IV-A,
we just need to explain the process of eliminating a vehicle
that falls far behind the virtual vehicle. Still take the example
illustrated in Fig. 2, suppose there are m intersections around
the requested location D that are denoted n1, n2, . . . , nm. For
each road between two adjacent intersections, we divide it into
several segments with length equaling to ΔL. If the last part
does not reach ΔL, we also count it as a segment. As for each
vehicle, we utilize a tuple (ni, nj , k, d) to represents its location
information, where ni, nj indicate the road intersections, and
the vehicle moves from ni to nj . k denotes the road segment
number counting from ni, and d represents the distance be-
tween the vehicle and the beginning of the segment. Assume
that a vehicle V is initially located at position P , as does its vir-
tual vehicle V ′. V ′ heads toward D, and moves with the road’s
average velocity. Every Δt time, the cloud server will check the
location of V and calculate the location of V ′ so that the data
traffic for trajectory tacking is sparse enough. Given that V ′ ar-
rives at a location P ′ = (n′

i, n
′
j , k

′, d′) after several Δt rounds,
If V is in the range from (n′

i, n
′
j , k

′, 0) to D, then V does not fall
far behind or V will be removed from the potential vehicle list.

Overall, we illustrate the vehicle tracking process in
Algorithm 2. Lines 1–3 check if there are vehicles around the
requested location and then send a request to these vehicles
for uploading pictures. Otherwise, we put vehicles near the
requested location into the potential vehicle list in Lines 5–6
and track these vehicles to see whether they move away from
D or fall behind in Lines 7–13.

V. PICTURE SELECTION AND PAYMENT CALCULATION

The cloud server will send a request to the selected vehicles
[N ] for uploading road pictures. However, vehicles are unwill-
ing to upload pictures without any compensation. To incentivize
vehicles to upload road pictures, we design a simple but ef-
fective incentive mechanism M(c) based on the VCG auction
[26], [27], where the quality of uploaded picture is taken into
consideration. Supposing the vehicle i, i ∈ [N ] claims price bi
for picture xi, then the cloud server will determine a winning
set [N ′] ⊂ [N ] to upload pictures and pay pi to i ∈ [N ′]. We
assume that the job of uploading the picture xi is associated
with a cost ci, which is the private information of i. Denote
q(xi) as the quality of xi evaluated by our proposed image pro-
cessing flow, which will be discussed in detail in Section VI-B.
We can obtain the value v([N ′]) of all uploaded pictures defined

as a diminishing return, which is frequently utilized in many
previous works such as [17], [20]

v ([N ′]) = λ ln

⎛
⎝1 +

∑
i∈[N ′]

q(xi)

⎞
⎠ (4)

where λ is a system parameter. The cloud server’s utility uc is
the difference between the value of collected pictures and the
corresponding payments, i.e.,

uc = v ([N ′])−
∑

i∈[N ′]

pi(bi, c−i) (5)

where pi(bi, c−i) is the payment to vehicle i when its bid strat-
egy is bi, and other’s bid strategy profile is c−i for [N ] \ {i}.
For vehicle i, its utility ui is

ui(bi, c−i) =

{
pi(bi, c−i)− ci, if i ∈ [N ′]

0, otherwise
(6)

the overall social welfare S([N ])

S ([N ]) =
∑
i∈[N ]

ui + uc

= λ ln

⎛
⎝1 +

∑
i∈[N ′]

q(xi)

⎞
⎠−

∑
i∈[N ′]

ci. (7)

Note that the cloud server cannot get access to the cost ci
of vehicle i; therefore, it treats the claimed price bi as the
corresponding cost ci. Consequently, we need to rewrite (7) in
terms of bi, i.e.,

S ([N ]) = λ ln

⎛
⎝1 +

∑
i∈[N ′]

q(xi)

⎞
⎠−

∑
i∈[N ′]

bi. (8)

We aim to maximize the social welfare in (8) and meanwhile
expect M(c) to satisfy several favored properties.
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Truthful: For every winning vehicle i ∈ [N ′] with cost ci and
claimed price bi, it cannot gain a larger utility by claiming a
higher or lower price than its cost ci

ui(bi, c−i) ≤ ui(ci, c−i) (9)

definition of ui(ci, c−i) is similar to ui(bi, c−i) in (6).
Individual Rational: For any vehicle i uploading picture xi,

the corresponding utility is greater than 0

ui = pi − ci ≥ 0. (10)

Denote [N−i] and [N ′
−i] as the vehicle set and the winner

set when vehicle i is excluded, respectively. We can obtain the
maximal social welfare S([N ′

−i]) for [N−i]. We describe the
detailed quality-based auction M(c) in Algorithm 3. Line 1
selects subset [N ′] to maximize social welfare, and Lines 4–7
demonstrate that pi is calculated according to the impact of i to
social welfare.

Next, we will analyze the properties of the proposed quality-
based auction M(c).

Theorem 1: Quality-based auction M(c) is truthful.
Proof: We will show that each vehicle has no incentive to

claim a wrong cost. For a vehicle, there are four outcomes.

Case 1: Vehicle i wins the auction when claiming bi = ci and
still wins when claiming bi �= ci. In this case, the
payment is

pi = S ([N ′])− S
([
N ′

−i

])
+ bi

= λ ln

⎛
⎝1+

∑
i∈[N ′]

q(xi)

⎞
⎠−

∑
[N ′]\ {i}

bi−S
([
N ′

−i

])

which is irrelevant to bi, and vehicle i cannot gain
higher utility when lying for cost.

Case 2: Vehicle i wins the auction when claiming bi = ci but
loses when claiming bi �= ci. In this case, the vehicle
i gets a utility ui ≥ 0 when winning the auction but
receives ui = 0 when losing the auction. Therefore,
we obtain ui(bi, c−i) ≤ ui(ci, c−i).

Case 3: Vehicle i loses the auction when claiming bi = ci but
wins when claiming bi �= ci. It demonstrates that i �∈

[N ′] when bi = ci; therefore, its utility ui = 0. If i
claims bi �= ci and wins the auction, then utility ui is

ui = S ([N ′])− S
([
N ′

−i

])
+ bi − ci

= λ ln

⎛
⎝1 +

∑
i∈[N ′]

q(xi)

⎞
⎠−

∑
j∈[N ′]\ {i}

bj − ci

− S
([
N ′

−i

])
= S ([N ′])− S

([
N ′

−i

])
≤ 0

where S([N ′]) is social welfare on [N ′] when i
claims truthful price. The last inequality holds be-
cause when bi = ci, vehicle i loses the auction, and
S([N ]) is maximized when winning set is N ′

−i.
Therefore ui(bi, c−i) ≤ ui(ci, c−i).

Case 4: Vehicle i loses the auction when claiming bi = ci,
and still loses when claiming bi �= ci. Therefore, the
utility ui(bi, c−i) = ui(ci, c−i) = 0, which implies
ui(bi, c−i) ≤ ui(ci, c−i).

Above all, the quality-based auction M(c) is truthful. �
Theorem 2: Quality-based auction M(c) is individual

rational.
Proof: If vehicle i loses, then pi = 0, and utility ui = 0.

Therefore, we just consider the case where vehicle i wins the
auction. According to theorem 1, vehicle i will claim price bi
as its cost ci for higher utility. ∀ i ∈ [N ′], the utility ui is

ui = pi − ci

= S ([N ′])− S
([
N ′

−i

])
+ bi − ci

= S ([N ′])− S
([
N ′

−i

])
≥ 0

the last inequality holds because, in the quality-based auc-
tion, we select the subset [N ′] that maximizes overall social
welfare. �

Theorem 3: The utility of cloud server uc ≥ 0.
Proof: According to (5), we obtain that

uc = v ([N ′])−
∑

i∈[N ′]

pi(bi, c−i)

= v ([N ′])−
∑

i∈[N ′]

(
S ([N ′])− S

([
N ′

−i

])
+ bi

)
≥

∑
i∈[N ′]

(v ([N ′])− v ([N ′] \ {i}))

−
∑

i∈[N ′]

(
S ([N ′])− S

([
N ′

−i

])
+ bi

)
.

The last inequality holds because v([N ′]) =
∑N ′

i=2(v([i
′])−

v([(i − 1)′])), and λ ln(1 + x) is concave. Thus, λ ln(1 + x1 +
Δx)− λ ln(1 + x1) ≥ λ ln(1 + x2 +Δx) − λ ln(1 + x2)
when x1 < x2,Δx > 0. Then, we get

uc ≥
∑

i∈[N ′]

⎛
⎝ ∑

j∈[N ′]

bj + S
([
N ′

−i

])
− v ([N ′] \ {i})− bi

⎞
⎠

=
∑

i∈[N ′]

(
S
([
N ′

−i

])
− S ([N ′] \ {i})

)
≥ 0.
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Fig. 8. Image matching example. (a) Image of some place. (b) Corresponding
Baidu street view image.

The last inequality holds because S([N ′
−i]) is maximized when

i is excluded. �
Moreover, the cloud server’s profit does not only depend on

the pictures’ value, and apps such as Waze can make profit by
advertisement and other means.

VI. PROCESSING OF THE REAL-TIME ROAD IMAGES

Each winning vehicle will upload a road picture through cel-
lular networks, but we only need qualified ones. Road pictures
do not have to be high resolution and should be evaluated from
the following aspects: 1) location where the road picture is
taken (the distance from the camera location to the requested
location should be close enough); 2) content of road picture,
(there may be completely unrelated pictures, such as an all
black picture, because the camera is obscured); 3) the shooting
angle of road picture (a picture taken off the road or deviated
from the road direction is unqualified since it cannot reflect
the required road information); and 4) the picture sharpness
(blurred pictures clearly do not meet the requirements). We
neglect the time factor because taking a picture is associated
with a timestamp, which can verify the picture’s real-timeliness.

It is difficult to directly evaluate a road picture. Since existing
Baidu street view images have already perfectly satisfied all the
above requirements and cover all the major cities with 360◦

views, an efficient method is to compare the uploaded pictures
with Baidu street view images of the corresponding positions.
The more matches they have, the more likely the uploaded pic-
ture is qualified. However, Baidu street view images have been
processed so that their brightness and hue are very different
from the real situation. We leverage the RootSIFT [23], [24]
algorithm to match the image that can yield more matches and
then evaluate picture quality according to the matching result.

A. Image Matching

To illustrate the image matching process, we use two images
in Fig. 8 as an example. Fig. 8(a) is an image taken at an
intersection, and Fig. 8(b) is the corresponding Baidu street
view image. The first step is to use RootSIFT feature detector
to detect feature points in both images and compute their SIFT
descriptors. For each feature point in the first image, we utilize
KNN (k = 2) to find two best matches in the second image
based on the distance between descriptors and vice versa for
the second image. If the Euclidean distance between a feature
descriptor and its best match is much smaller than the second
best match, the first match is very likely to be a correct match.

Thus, we accept the best match and reject the second best
match. On the contrary, if the two best matches are at similar
distances to the feature descriptor, they may both be wrong
matches since a good match is distinctive; then, we reject both
matches. We carry out this process by checking whether the
ratio between the distance to the best match and the distance to
the second best match is smaller than a threshold. In practice,
we find 0.75 to be a proper threshold that can reject incorrect
matches while keeping correct ones. Now, we have two match
sets: one from the first image to the second image and the other
from the second image to the first image. A good match of two
feature points should be symmetrical, which means they should
be the best matching point of the other in both match sets.

Corresponding points in two image planes should obey the
epipolar constraint, which means the match of a given point in
another image plane must lie on this point’s epipolar line. The
epipolar constraint between images can be represented by the
fundamental matrix that can be calculated through RANSAC
method [5] from the match sets. Mathematically, for a feature
point, if the distance between its corresponding point and its
epipolar line exceeds the threshold, this match pair should be
rejected. Therefore, the last step is to obtain the fundamental
matrix through RANSAC method and reject the matches which
do not obey the epipolar constraint. We always select the one
who has the largest number of matches with its corresponding
Baidu Street view image and send it back to the requested user.
However, we should first set an evaluation criterion, which is
to decide whether the road picture meets basic requirements.
Otherwise, if all picture candidates are not qualified, even the
one with the largest number of matches should not be accepted.

B. Picture Quality

Baidu street view was established a few years ago; therefore,
the street view images may much differ from off-the-shelf real
road scenes. Each time the cloud server will select the best
road picture, which is then transmitted to the user and stored
in the cloud server as a standard image for future use. The next
time a user requests a road picture of the same place, candidate
pictures will be matched with the standard image instead of the
Baidu street view. This process can ensure that the reference
images for evaluation also stay a certain degree of consistency.
Thereby, we should consider two cases: matching with street
view and matching with standard road images. Experiment
results also show that the number of matches with street view
image is generally much less than with standard image so that
the evaluation criteria for the two cases should be different.

For the case of matching with standard road images, using the
number of match points to determine whether the image meets
basic requirements is not a reliable approach. This is because
uploaded images’ sizes, pixels, and contents may be different,
and it is difficult to identify a specific threshold to distinguish
qualified pictures from unqualified pictures. For example, since
the feature point is often extracted from buildings, road signs,
street lamps, and other objects, if there are few buildings in the
image, the number of matches for feature points will be small.
With such an observation, we use the ratio between the number
of matches and the number of detected feature points (if the
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Fig. 9. Evaluation process.

TABLE I
RESULTS OF VEHICLE MANEUVER PREDICTION ACCURACY

number of detected feature points in two pictures are not equal,
use the smaller one) as the criterion and set a corresponding
threshold αr. According to experiment results, we set αr as
0.025. Images whose ratio between the number of matches and
the number of feature points is greater than 0.025 are considered
qualified road images. As for matching with Baidu street view,
we use the number of match points as the criterion because
we can only obtain a small number of matches. Based on the
experiment results, we find images with more than ten matches
with the street view images are qualified to reflect the road
information; therefore, threshold αn = 10. The thresholds αr

and αn are set the values according to the image matching tests
when we consider that the uploaded images can fundamentally
reflect real road conditions for the two different cases.

Taking two different cases into consideration, we define the
quality of picture xi separately as follows:

q(xi) =

{
rm
αr

, matching with standard image
nm

αn
, matching with street view

(11)

where rm is the ratio between the number of matches and the
number of detected feature points, and nm is the number of
matches. The whole process of evaluation is shown in Fig. 9.

VII. EXPERIMENTS AND SIMULATION

We fix a NEXUS 4 smartphone in front of the car to collect
acceleration, GPS, and orientation data. The sampling rate of
the smartphone is 50 Hz. Acceleration, GPS, and orientation
data are used for the vehicle maneuver prediction. Meanwhile,
we take road pictures and match them with the corresponding
Baidu street view for quality evaluation. Moreover, we carry
out extensive simulation for vehicle tracking and the proposed
quality-based auction by utilizing real data sets.

Fig. 10. Accuracy prediction lead time diagram.

TABLE II
RESULTS OF LANE-CHANGE DETECTION ACCURACY

TABLE III
RESULTS OF VEHICLE MANEUVER DETECTION ACCURACY

Fig. 11. Simulation map of VTTA.

A. Vehicle Selection Experiments

The test for the vehicle selection can be divided into two
parts: VMPA in Section IV-A and VTTA in Section IV-B. With
regard to VMPA, we collect real acceleration and orientation
data of moving vehicles to analyze its performance. As for
VTTA, we take advantage of real road parameters to design the
simulations.

1) VMPA Experiments: In the experiment of VMPA, we use
acceleration data to predict the vehicle’s maneuver when it
moves at intersections while utilizing orientation data to detect
the vehicle’s maneuver when it stops at intersections. We collect
56 sets of acceleration data for the vehicle maneuver prediction
in which 19 are set for turning right, 19 are set for turning left,
and 18 are set for going straight, respectively. Meanwhile, we
also gather the corresponding 56 sets of orientation data when
the vehicle turns left, turns right, or goes straight at intersections
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Fig. 12. Notification time. (a) Scattering diagram of the notification time. (b) Impact of the number of vehicles for notification time.

Fig. 13. Economic properties. (a) Truthfulness. (b) Individual rationality.

to test detection accuracy. For the case where vehicles stop at
intersections, we collect 29 sets of acceleration data in which
nine are set for left lane change, 11 are set for right lane change,
and the other nine are set for no lane change.

When vehicles move at intersections, we set the prediction
lead time tp as 4 s and the collection lead time ti as 2 s. Then,
we implement KNN and choose five sets of acceleration data for
each maneuver as the training sets to train the classifier. After
the training process, we input the rest of the acceleration data
to the classifier and get prediction accuracy results shown in
Table I. The prediction accuracy is the ratio between the number
of correct prediction and the number of total tests. According to
Table I, we can achieve at least 84.6% prediction accuracy and
95.1% on average with 39 correct times out of 41 total times.

We also consider the GPS localization error, which affects
the calculation of tp and ti according to Fig. 4, to test the
robustness of VMPA. We range tp from 3.5 to 4 s with an
interval of 0.05 s each time. Therefore, we can get 11 groups
of prediction accuracy results, which are drawn in Fig. 10.
We can see that, even if the error of prediction lead time
reaches 0.5 s, which means 6.9 m of GPS localization error
when v = 50 km/h, the average accuracy still maintains 80%.
Therefore, our proposed vehicle prediction scheme is robust for
localization error, which is several meters in most times. Fig. 10
also shows that acceleration data collected ahead of 4 s is more
representative for vehicle maneuver prediction.

When vehicles stop at intersections, we first attempt to
remove deviating vehicles through lane-change detection, and

the accuracy of lane-change detection is shown in Table II.
We carry out detection experiments of the vehicle’s maneuver
when it passes through the intersection. We utilize Or to judge
whether the vehicle turns left, turns right or goes straight with
the results shown in Table III. From Table III, we obtain that
the detection process is highly reliable with 96.4% accuracy on
average.

2) VTTA Simulation: We use parameters of real town roads,
as shown in Fig. 11, to simulate VTTA and test its efficiency.

First we build a searching tree structure for Fig. 11 and set
the user’s acceptable time as 100 s and the number of vehicles
around as 100, where the vehicles randomly turn right, turn left,
and go straight at intersections. Then, we run the simulation for
50 times to obtain the user’s actual notification time defined as
the time interval between the time a user sends its request and the
time the cloud server predicts the first vehicle will pass by the
requested location. We draw the results in Fig. 12(a). We can
see that most of the points lie below the reference line of 50 s,
which means the user’s notification time is usually within 50 s.

In addition, we also investigate the impact of the number
of vehicles around and increase the number from 100 to 200
with an interval of 10 each time. To alleviate randomness, we
run the algorithm ten times for each vehicle number case and
get the mean value. Fig. 12(b) demonstrates the results which
reflect that, with the increase in the vehicle number, the average
notification time tends to decrease. The results also show that
prediction of vehicle’s maneuver can reduce the notification
time significantly.
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Fig. 14. Image matching results. (a) Image matching result after ratio test and
symmetry test: 54 matches. (b) Image matching result after RANSAC filtering:
30 matches.

B. Quality-Based Auction Simulations

Suppose the number of selected vehicles is N = 100, and
their claimed prices are uniformly distributed in [0, 1] with
corresponding picture quality ranging in [3, 4] uniformly. λ is
set as 2.

1) Truthfulness: We randomly select a vehicle in [N ], e.g.,
vehicle 1, and let it randomly chooses a price in [0.5b1, 2b1]. We
run Algorithm 3 for 100 times, and compare the utility between
truthfully and untruthfully claiming price, which is shown in
Fig. 13(a). We can see that the vehicle can always gain higher
utility when truthfully claiming than lying.

2) Individual Rationality: Then, we plot the utility of each
vehicle in Fig. 13(b). According to Fig. 13(b), we find that
ui ≥ 0 ∀ i ∈ [N ].

C. Image Matching Simulations

We match the road picture with the corresponding Baidu
street view. Initially, we detect 3094 feature points in Fig. 8(a)
and 2999 feature points in Fig. 8(b). However, after the ra-
tio test and the symmetry test, only 54 matches remain. In
Fig. 14(a), the white circles are initially detected feature points,
whereas the yellow lines connect matched points. Fig. 14(b)
demonstrates the result after RANSAC filtering. Obviously,
after RANSAC, many incorrect matches are eliminated with
only 30 matches left, which means the picture quality is 3.

VIII. CONCLUSION

In this paper, we build an RVShare system to acquire visual
real-time road information, where the VMPA and VTTA are
proposed to predict the vehicle’s maneuver and track vehicle,
respectively. The combination of vehicle prediction and vehicle
tracking can select vehicles for view-sharing job distribution
and reduce the user’s waiting time. A quality-based auction is
designed to incentivize selected vehicles to upload qualified
pictures. Furthermore, the uploaded picture is matched with
Baidu street view for quality evaluation. Extensive experiments
demonstrate that the RVShare system is efficient and robust.
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